If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-16t^2+480t)=0
We get rid of parentheses
-16t^2+480t=0
a = -16; b = 480; c = 0;
Δ = b2-4ac
Δ = 4802-4·(-16)·0
Δ = 230400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{230400}=480$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(480)-480}{2*-16}=\frac{-960}{-32} =+30 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(480)+480}{2*-16}=\frac{0}{-32} =0 $
| 2.8+3.x+1=16.6 | | 6(3-x)+(-20)=10+3(4x2) | | 6x^2-136x=-600 | | 2x3.14x=1004.8 | | (x-3)-3=17 | | 5p-8p=3(p+4) | | 2•3.14x=1004.8 | | (x+2)+x=5 | | 3n–15+n=101 | | 14/32=x/40 | | -3(1-6)=2(b+1) | | 40/14=x/32 | | 5(x+6=74x | | 5x+6=2x+21=54 | | 40/32=x/14 | | x+42+58=180 | | 742.35=49(x+2.15) | | 7x–5=4x+13 | | 7x=3X3+24 | | J^2+j=20 | | 2/3z=1/4+4 | | 2/3z=1/4 | | 3+2c=13 | | 50q+43=-11q+70 | | 6=2(4x+10)+5 | | -6-2/3d+13/6d=-4 | | 5-6z=9+4(2-7z) | | 4/3b-11=25b= | | 8+7h=6(5-9h) | | 90=(3x-6)+x | | y+4/5=2 | | 10-2f=9+5(8-7f) |